仅只有未实名的,新媒易不收取任何费用,公益非盈利机构
24小时服务热线: 4000-162-302
请扫码咨询

新媒易动态

NEWS CENTER

人群标签可以理解为数据型用户画像

2021-05-16

用户都是哪些人,谁使用了这些功能 ?

人群标签可以理解为数据型用户画像。为什么在这里提及,因为大量数据(特别是具体的采集数据)都会涉及到人群这个角度。人群也是定量数据中最具有独立观察价值的数据。

人群标签就是根据人群特点,进行描述分类,对人群打标签。我们根据不同的获取路径,可以大致分两类。

一类是利用基本数据进行定义,比较简单直接。

从不同的端,可以获取用户的基本来源,如访问端的类型、或地理位置等,可以定义为“客户端用户”、“江浙沪用户”等。

通过唯一用户ID所匹配的一系列用户注册时的基本信息内容,如性别、职业、行业、兴趣等,可以定义为“女性用户”、“定制类用户”等。

还有一类就是复合型自定义,一般是根据用户的业务、行为数据或者类别属性来定义的,它非常的灵活聚焦。

使用某类条件公式来定义某一波用户,如我们将购买能力从高低来分层用户:月购买小于5000的为中购买力用户,大于5000的为高购买力用户,周活跃大于2但无购买记录为潜力用户。

另外一种构建用户范畴的方式:通过“时间、地点、事件”等一系列复杂描述来勾勒圈选用户,如我们定义“第一次访问站点时,在首页有关注过每日推荐“的用户。

这里的复合定义很多时候都会用到多指标多维度。是一种深度结合业务场景来圈选人群,定义用户的方式。


人群标签,不仅帮助我们细分数据,知道“到底是什么人做了什么事”,聚焦使用人群的各项指标健康情况,最终,还可以定位产品、定位人群、精细化运营产品:现在的用户大致都集中在哪些人群中?哪些功能是头部用户需要的?哪些功能最受基础版用户的欢迎等等。在探索商业需求的时候,更容易找到抓钩,去深挖商业价值。

常用画像的场景

1)定性用户画像

通过调研,熟悉角色日常生活或者工作场景环境,定义基本用户画像。如:用户访谈、用户旅程图。

2)定量用户画像

用定量的数据做某些值的规则,来圈定用户人群。如:用户生命周期、问卷分发、运营活动。某产品生命周期使用示例:

相关推荐