新媒易动态
NEWS CENTER
NEWS CENTER
2021-01-24
从数据类型来看看,特征和线索是数据的组合,而画像是数据的集合。
年龄大于25岁,是一个用户特征;而“年龄大于25岁”加上“每日工作时长超过12个小时”这两个特征的组合,则可以称为大龄社畜青年。
而用户线索不仅是特征,它还是事件和特征的组合。
从时效性看,事件更多的是实时触发,而特征多为离线清理;前者是开始,而后者是结束;比如说:“我今天乘坐了地铁”和“地铁出行用户”。
用户画像则是多维特征的集合,由基础属性、地理属性、社会属性等一系列不同维度特征呈现用户或者群体特点,从而进行分析工作。
组合的目的,是为了更高效的使用数据。
从数据价值层面看,用户特征的目标性较弱,不会特别在意数据价值,它主要解决从无到有的问题。
而用户线索由于应用方主要是销售和服务同学,其目标聚焦在如何将用户转变成客户以及如何让用户、客户不流失,希望潜在用户能够更靠近成交,希望服务的能够更为及时。
地铁出行用户这样的特征是无法准确销售和服务的。
而如果是“我今天乘坐了地铁”,看了手机的“车辆降价广告很久”,“我没有车”但是“月收入能够支持车贷”这样的数据组合,就能够比较清晰的制定运营策略,从而进行服务或销售了。
在使用方式上看,线索和特征是“圈选->运营”的步骤,我们明确知道要对什么用户进行运营。
而用户画像则会额外经过分析过程,即“分析->圈选->运营”,它偏重于经过分析结合数据模型后进一步制定运营策略。
明晰概念,规划才能够清晰。
在进行产品规划时,可以从事物的流转过程及状态着手;思考用户线索提供给销售和服务人员的前、中、后分别有哪些阶段,以及每个阶段需要做什么样的事情。
完整的流转过程,也是用户线索的生命周期;由此可以制定最小可执行版本,然后再有序、有效的进行产品规划以及迭代。
线索的收集和数据的整合并没有太大的区别,目标是数据越多越好。
数据量越多,意味着客流量越大,在10000个人经过的道路开便利店和在1000个人经过的道路开便利店,两者每日成交的概率是不同的。
其次数据维度越多,意味着给运营人员决策和分析的维度越多,我们不仅能基于性别采购商品,还能基于年龄、收入去采购商品。
而分析也是相同的道理,样本量大分析的结果代表性更高,决策的风险更低;维度多,分析的角度也更多。
在这一阶段产品同学的考量是,基于不同的数据来源,协助研发同学设计统一的数据上报规范。
对元数据进行可视化的管理后,再依据不同业务对数据的时效性要求提供服务。
功能上可以参见数据集市,在这里就不过多展开了。