新媒易动态
NEWS CENTER
NEWS CENTER
2021-06-15
作为用户体验从业者,我们有责任提供多样化的AI产品体验,来满足不同背景、不同能力的用户的需求。如果我们仅关注部分用户需求,那么所构建的AI交互模型将会存在偏差,并且这些偏差会随着机器学习的训练而不断加深。因此,在研究AI产品用户体验时,仅按照基本的人口属性(如:性别、年龄等)进行随机抽样是不够的,还需要考虑一些与AI产品使用体验相关的抽样因素。如:
在早期的原型设计阶段,
AI系统可能尚未实现全部的功能或交互方式,还不能称之为“产品”。如果使用这样的系统做研究,被试的使用体验是不完整的。因此,我们可以尝试使用绿野仙踪研究法(Wizard of Oz techniques)。
这个方法中,研究人员在“幕后“模拟AI系统的交互过程和结果,让被试误认为自己是在与真实的AI系统进行互动。例如,研究人员根据被试之前的选择设置AI系统的推荐结果,被试却以为这是AI系统的实时反馈。当被试认为他们操作的是真实的AI系统时,他们能够更认真地、更自然地进行互动。
在进行绿野仙踪测试时,将被试的“真实信息”预先整合到AI系统原型中也是很重要的。
例如,系统对手机相册进行人脸识别时,识别出普通人的照片和识别出好朋友的照片,用户的感受是大不相同的。如果仅仅在AI系统中使用一些通用的内容,用户可能不会流露真情实感,而与自己相关的真实信息才会让用户更投入地交互。
生活中有很多关于AI的传闻,当我们向被试提及AI,他们可能会基于对AI的刻板印象或目前热议的AI负面事件进行联想,也可能过分理想地认为AI无所不能。如果想更好地了解用户对AI产品的期待,研究人员可以让用户更多思考“如果是人类,TA能如何帮助到你”。
在谈论AI产品时,可以使用以下问题来帮助用户多谈论对人本身的期待:
AI产品并不完美。人工智能算法是基于概率的、有缺陷的,所以是会犯错误的。特别是在AI产品设计的早期,原型设计通常比较理想化,使用这样的交互原型进行用户研究得到的用户体验反馈往往过于乐观。
为此在AI产品原型评估阶段,我们应该多考虑AI产品实际应用过程中会出现的错误,从而弥补实际体验与理想原型之间的差距。一旦了解AI产品出错对用户体验的影响,研究人员就可以通过设计来减轻这类负面影响。
在关注出错体验时,有以下几点值得思考:
虽然人们在不了解AI技术背后的具体细节时,也能获得积极的产品体验,但在用户的心智模型中,对于AI系统能提供什么服务,何时以及为什么提供,是有预期的。
研究人员容易假设用户能够正确理解AI系统是如何工作的,实际上用户的理解经常是错误的(即使他们对此非常有信心)。找到用户的心智模型与AI系统的实际表现之间的差距,就能通过设计来更好地改善AI系统的设计。
要了解被试如何理解你的AI系统运作模式,可以尝试如下方法: