新媒易动态
NEWS CENTER
NEWS CENTER
2020-05-21
做数据分析的同学最常服务运营,也最怕运营纠结。因为本身运营的工作和数据分析有高度关联,,十篇里有六篇是运营写的。运营对数据分析涉入的如此之深,以至于经常在分析思路、分析方法、分析结论上和数据分析师们怼起来。
今天我们就先看其中最大的一个问题。运营的工种有很多(如下图),其中活动运营是策略性最强,和数据分析关系最紧密,也是怼的最多的岗位,今天就用它举例子。
请听题:
某游戏APP,用户活跃率在5月出现轻微下降情况,活动运营小组决定做一个签到打卡的活动,提高用户活跃度(具体提高多少没说),现活动前后数据如下图所示,活动运营小组坚持称:如果不是做活动,5月份自然增长是下跌的。老板认为这是扯淡。活动运营小组称:数据分析师应利用人工智能大数据,精准分析出自然增长率。
问:你是数据分析师,你该怎么办?
首先问,这个题的题眼在哪里?
A、用户活跃率减少
B、自然增长率
C、人工智能大数据
思
考
一
秒
钟
我们先反问一个问题:某天,一个人拿着弓来问你:“请用人工智能大数据精确分析一下,我比自然命中率高了多少”你会怎么办?你会抄起键盘开始叭叭写代码吗?——不会!你会先问他:“你射的是啥?”
如果他说:我也不知道射的啥,你帮我分析分析?你会咋办?你会用人工智能大数据分析他要射什么东西吗?——当然不会!有礼貌的话,你会让他先把自己射的箭找到;没礼貌的话,你可以直接口吐芬芳了。因为即使是幼儿园的小朋友都知道:射箭要先树个靶子。这是常识。
所以整体的题眼是:具体提高多少没说。甚至题目本身都是有问题的。请注意问题的来源是活跃用户数量减少。结果运营在设目标的时候变成了用户活跃度。一字之差,含义就从清晰变模糊。
指标本身不清晰,又没有明确指出要提升多少,对活动后分析是一场灾难。简直就是射箭故事的翻版。问题是:为啥会出这么奇葩的事。
真正在企业上过班就知道:并非所有决策都是高度理性的,比如:
总之,真实企业里,大概:
当然,在管理规范的大企业里,这种乱象少很多。但是同类问题在大部分企业都存在,事先不写清楚目标,事后指望大数据来分析。甚至企图通过人造一个很低的、负增长的自然增长率,来蒙混过关。真要是碰上这种事,咋办呢?
首先,坚决不扯什么“自然增长率”。特别是在这种短期活动很密集的业务里。如果一定要扯,采用买定离手的机制:大家事先谈好自然增长率是多少,事后就看这个数,不要再调整。这就跟下棋的时候拒绝悔棋是一个道理。
这是彻底解决问题的三大原则。
当然,这么做会遇到两个挑战:
设定目标有三种基本方法:
分别对应:
有同学会问:为啥都和KPI挂钩?答:如果做的事跟KPI没啥关系,那你也知道这个事的重要紧急程度了。大张旗鼓做和KPI无关的事,本身就有可能是影响KPI的原因哈。
KPI分解法举例:
KPI倒推法举例: