新媒易动态
NEWS CENTER
NEWS CENTER
2019-05-13
基于用户感兴趣的物品A,找到和A内容信息相近的物品B
(1)找到物品A的内容信息
(2)找到与内容信息相近的物品B
运用:这种推荐算法多数运用在简单的推荐列表上,当用户看了物品A立刻展示推荐关联的物品B,不需要通过大量计算反馈。但由于其局限性并不能精准推荐出用户所喜欢的内容。
这种算法给用户推荐和他兴趣相似的其他用户喜欢的物品。
基于用户的协同过滤算法主要包括两个步骤:
(1)找到和目标用户兴趣相似的用户集合。
(2)找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户。
运用:UserCF的推荐结果着重于反映和用户兴趣相似的小群体的热点,即更社会化,反映了用户所在的小型兴趣群体中物品的热门程度
这种算法给用户推荐和他之前喜欢的物品相似的物品。
基于物品的协同过滤算法主要分为两步:
(1)计算物品之间的相似度。
(2)运用:ItemCF的推荐结果着重于维系用户的历史兴趣,即更个性化,反映了用户自己的兴趣传承
通过隐含特征联系用户兴趣和物品
LFM是一种基于机器学习的方法,具有比较好的理论基础。这个方法和基于邻域的方法相比有更强的理论基础、离线计算空间、时间的复杂度,并且可以实现在线实时推荐。
(1)基于图的推荐算法
其基本思想是将用户行为数据表示为一系列的二元组。基于用户行为二分图,给用户u推荐物品,可以转化为计算用户顶点u和与所有物品顶点i之间的相关性,然后取与用户没有直接边相连的物品,按照相关性的高低生成推荐列表。
(2)基于关联规则的推荐
反映一个事物与其他事物之间的相互依存性和关联性,常用于实体商店或在线电商的推荐系统:通过对顾客的购买记录数据库进行关联规则挖掘,最终目的是发现顾客群体的购买习惯的内在共性。
(3)基于知识推荐
使用用户知识和产品知识, 通过推理什么产品能满足用户需求来产生推荐。这种推荐系统不依赖于用户评分等关于用户偏好的历史数据, 故其不存在冷启动方面的问题。基于知识的推荐系统响应用户的即时需求, 当用户偏好发生变化时不需要任何训练。