新媒易动态
NEWS CENTER
NEWS CENTER
2019-05-09
作为业务方的供应链部门,数据的统计分析是他们的日常工作。仓管和采购的很多决策和管理,都需要依照数据进行。如果系统只有基础的业务流程操作,那么业务方只能手工导出明细,来人肉计算各项业务数据。
这样的话,第一,他们会在统计数据上花费大量的时间,数据不一定准,不同部门之间的数据口径会存在不一致。并且当数据量越来越大,导出明细这件事情会越来越困难;第二,作为后台产品,准确、即时、智能的价值无法体现出来,一些实时的数据变化靠人工不一定能统计到。
所以,在基本的业务流程之外,提供一些数据统计分析方向的功能,包括核心业务数据的统计报表,和一些数据的智能计算,是供应链系统能为公司实际业务带来的价值。
本文就简单介绍一下电商、O2O领域的供应链后台系统中,会有哪一些较为常见的数据统计分析功能。
不同于基础流程和业务功能,数据统计部分不是一上来就有的,而是会在迭代的过程中,先通过业务操作积累基础数据,再将统计功能逐个上线。从产品迭代的角度来看,数据对业务的作用,大致会经过三个阶段:
(1)基础数据积累
在产品上线的早期,先通过实现各项业务流程,完成业务各环节基础数据的收集、积累,保证数据正确,不遗漏。通常这个时候的系统还是处于补全各业务模块的阶段,业务方的数据分析工作,先通过实现明细记录的查看、导出功能,保证数据能够被下载下来即可。
(2)数据统计报表展现
核心业务流程已经运转起来之后,在保证数据本身正确的前提下,可以逐步实现各项核心业务数据的统计和展现。